Sensitivity Enhanced Fiber Laser Gyr, Phase I

Completed Technology Project (2017 - 2017)

Project Introduction

The essential elements that characterize the performance of a laser gyro are (a) a bidirectional ring laser, (b) a lightweight, efficient instrument (c) a high sensitivity to rotation and (d) a linear response without dead band. To address (c), substantial enhancement has been predicted through large intracavity dispersion; we have demonstrated this property in a mode-locked laser with intracavity Fabry-Perot etalon, yielding a decrease in response due to the fact that the Kramers-Kronig dispersion of the Fabry-Perot is positive. The objective of Phase I is to experimentally demonstrate an enhancement using a Gires-Tournois interferometer for dispersion control, in combination with demonstrating the absence of dead band (d) in a solid state laser. A key element is the realization that it is possible to engineer a mode-locked laser where the pulse envelope velocity is controlled by other parameters than the dispersion. This property will be exploited in Phase I by inserting in a ring mode-locked Ti:sapphire laser a Gires-Tournois and a Rubidium cell, to demonstrate simultaneously the enhancement of the gyro sensitivity, the use of a solid state gain medium in a gyro, and the absence of dead band. We will also prepare for Phase II, in which these results will be implemented in a mode-locked fiber laser gyro, to demonstrate the light and efficient instrument required for space applications.

Primary U.S. Work Locations and Key Partners

Sensitivity enhanced fiber laser gyro, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Sensitivity Enhanced Fiber Laser Gyr, Phase I

Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
Lenzner Research, LLC	Lead Organization	Industry	Tucson, Arizona
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Primary U.S. Work Locations	
Alabama	Arizona

Project Transitions

June 2017: Project Start

December 2017: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140779)

Images

Briefing Chart Image

Sensitivity enhanced fiber laser gyro, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/132680)

Final Summary Chart Image Sensitivity enhanced fiber laser gyro, Phase I Project Image (https://techport.nasa.gov/image/133799)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Lenzner Research, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Matthias H Lenzner

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - └─ TX17.2 Navigation Technologies
 - □ TX17.2.3 Navigation Sensors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

